N91-22730

A CONCEPTUAL MODEL FOR
MEGAPROGRAMMING

October 9, 1990

Will Tracz

MD 0210
IBM Federal Sector Division
Owego, N.Y. 13827

OWEGO@IBM.COM
(607) 751-2169

ii A Conceptual Model for Megaprogramming

Abstract

“Currently, software l;\' put together one statement at a time. What we need is to put software together one
jml,wf?elnzl alt 9;0 time.” — Barry Boehm, at the Domain Specific Software Architecture (DSSA) Workshop,
u y = [) .

Megaprogramming, as defined at the first ISTO Software Technology Community Mecting, June 27-29, 1990, b
Barry Boehm, director of DARPA/ISTO, is component-based sofg'alvare engineet)'(ing and glife:-cyc:le maﬁagem'enz
The goal of this paper is to place megaprogramming in perspective with research in other areas of software engi-
neering (i.e., formal methods and rapid prototyping) and to describe the author’s experience developing a system
to support megaprogramming. ’

The paper, first, analyzes megaprogramming and its relationship to other DARPA research initiatives (CPS/CPL
— Common Prototyping System/Common Prototyping Language , DSSA — Domain Specific Software Architec-
tures, and SWU — Software Understanding). Next, the desirable attributes of megaprogramming software compo-
nents are identified and a software development model (The 3C Model) and resulting prototype
énega%re%gramming system (LILEANNA — Library Interconnection Language Extended by Annotated Ada) are

escribed.

Keywords: domain modeling, formal methods, inheritance, parameterized programming, rapid prototyping, soft-
ware engineering, and software reuse. '

Abstract it

v

l A Conceptual Model for Megaprogramming

1.0 Introduction

“Megaprogramming is the type of thing you can go into a 3-star generals office and use to explain what
DARPA is going to do for them to make their software less expensive and have better quality.” — Barry
Boehm, at the ISTO Software Technology Community Meeting, June 27-29, 1990).

Software researchers and developers have long pursued the goal of increased software productivity and quality. As
the programming profession matures and basic research into programming languages and formal methods advance,
opportunities are emerging to apply some of these resuits to the software development process. This paper is
about component-based programming or megaprogramming, a term coined by Barry Boehm(2] at DARPA/ISTO,
which is an essential element of the DARPA Software Strategic Plan'. Reusing software components, instead of
re-writing them, is a long held[16], intuitively appealing, if not obvious, approach to increasing productivity and
* quality. Systems developed based on reusable software artifacts, in principle, should cost less (partially attribut-
able to a shorter schedule), and contain fewer defects because of the “tried and true” parts used in its composition.
Unfortunately, a one-dimensional view of quality as being the “absence of defects” is not sufficient to explain the
necessary attributes of software that make it reusable (i.e., portability, flexibility, reliability, useability, and under-
standability are other essential attributes). The observation that “quality can not be tested into a program, but
needs to be designed into a program,” is especially applicable to megaprogramming.

The goal of this paper is to examine the technical foundations of megaprogramming and to assess their effective-
ness for increasing the interoperability, adaptability, and scaleability of its components (i.e., the quality of its com-
ponents). To this end, this paper is organized into three sections. The first section summarizes and analyzes the
megaprogramming vision initially presented as part of the DARPA Software Technology Plan{21]. The next
section introduces a conceptual model for reusable software components (the 3C Model[23]) based on separating a
component’s context (what can change) from the concept it encapsulates (the interface it exports) and its content
or implementation. The final section describes work in progress on a megaprogramming implementation,
LILEANNA[24] (Library Interconnection Language Extended by Annotated Ada), which combines the formal
methods of ANNA[14] and the parameterized programming capability of OBJ[11]

2.0 Megaprogramming Vision

“Software productivity improvenients in the past have been accidental because they allow us to “work faster”.
DARPA wants people to “work smarter” or to avoid work altogether.” — Barry Boehm, at the Domain
Specific Software Architecture (DSSA) Workshop, July 11-12, 1990.

Megaprogramming is envisioned as a giant step toward? increasing “development productivity, maintenance pro-
ductivity, reliability, availability, security, portability, interoperability and operational capability{2]." Megaprogram-
ming will incorporate proven, well-defined components whose quality will evolve, in the Darwinian sense.
Megaprogramming requires the modification of the traditional software development process to support
component-oriented software evolution. Domain-specific software architectures need to be defined and imple-
mented according to software composition principles and open interface specifications. The resulting software
assets need to be stored and accessed in a repository ideally built on a persistent object base, with support for
heterogeneous software components in distributed environments. Finally, additional environmental capabilities
(e.g., hypermedia) are needed to provide software understanding at the component and architectural levels.

The subsections that follow describe some of the focal points of the DARPA Software Technology Plan[21]
related to megaprogramming. In particular, an environment to support megaprogramming (Megaprogramming
Software Team) and the generation and promotion of megaprogramming components (Megaprogramming Soft-
ware Interchange) are addressed. .

I Prior-to Boehm’s use of the term “megaprogramming”, Joseph Goguen|l1] suggested the term hyperprogramming to refer
to a similar, if not identical, programming paradigm. The author has suggested using the term
programming-with-the-large [24] to emphasize the granularity of the objects being manipulated.

3 The analogy used by Barry Boehm was that, historically speaking, one might view machine language programming as
resulting in productivity at a snails pace, assembler language programming — a turtie’s pace, programming in FORTRAN,
» Cor Ada — walking, and megaprogramming as walking with seven league boots.

. ORIGINAL PAGE 1g '™roduction !

OF POOR QUALITY

2 A Conceptual Model for Megaprogramming T

2.1 Megaprogramming Software Team

“Configuration = Components + Interfaces + Documenlation
Software Team = Configuration + Process + Automation + Control” — Bill Scherlis, at the ISTO Soft-
ware Technology Community Meeting, June 27-29, 1990.

The goal of the megaprogramming software team is to create an environment to:

I. :‘manage systems as configurations of components, interfaces, specifications, etc.,
2. increase the scale of units of software construction (to modules), and
3. increase the range of scales of units of software interchange (algorithms to subsystemns)[21]."

The key elements of the megaprogramming software team are:

« Component sources — curmently, components under consideration are from reuse libraries (eg.
SIMTEL20{5] or RAPID{20]) or COTS (Commercial Off-The-Shelf) software (e.g.. GRACE[!] or
Booch[3] components). Application generator technology is desirable to provide for adaptable modules
while re-engineered components (e.g., CAMP[17]) could provide additional resources. It is desirable to
move toward new customizable components with a rapid prototyping capability.

« Interface definitions — currently, there exists an ad hoc standard consisting of Ada package specifications
and informal documentation. It is desirable to develop a Module Interconnect Formalism (MIF) with
hidden implementations supported by formal analysis and validation tools.

+ System documentation — currently, simple hypertext systems are supporting the (often ambiguous and
incomplete) textual documentation associated with software components. It is desirable to create a
repository-based, hypermedia environment that provides traceability between artifacts and supports the
capture, query, and navigation of domain knowledge.

« Process structure — currently, there exists no predictable software development process. It is desirable to
. develop an evolutionary development life cycle with support to domain engineering, integrated require-
ments acquisition, and reverse/re-engineering.

+ Process Automation — currently, CASE tools are either stand-alone or federated (e.g., Unix?). It is desir-
able 1o integrate the tools and create a meta-programming environment to support process description and
refinemnent.

+ Control/Assessment — currently, only a priori software metrics and process instrumentation exists. It is
desirable to integrate the measurement process with tool support and to create a cost-estimation capability.

The megaprogramming software team initially expects to draw resources from the STARS (Software Technology
for Adaptable Reliable Systems) SEE (Software Engineering Environment) program. Future tools will be contrib-
uted by Arcadia[22), CPS/CPL{6] (Common Prototyping System/Common Prototyping Language), DSSA
(Domain Specific Software Architectures){18], POB (Persistent Object Bases), SWU (Software Understanding),
and REE (Re-Engincering) programs. Interface and architecture codification will be supported by a Module
Interconnect Formalism (MIF), which is an outgrowth of the CPS/CPL program.

The goal of MIF is to adequately describe a software component such that its selection and use can be accom-
plished without looking at its implementation. The component interfaces will include, not only the entry points,
type definitions and data formats (e.g. Ada package specification), but a description of its functionality, side effects,
performance expectations, degree and kind of assurance of consistency between s‘peciﬁcation and implementation
(reliability), and appropriate test cases. DSSA will provide the initial ‘avenue for the application of this tech-
nology. (An architecture is a collection of interfaces.) I[ncremental asset creation and customization will be guided
by the CPS prototyping technology.

Asset capture and re-capture will be supported by SWU's design record, hypertext browsing capability, and REE.
The design record will provide a “common data structure for system documentation and libraries[21]". The sug-
gested data elements in a design record include:

* code,
* test cases,

ORIGINAL PAGE IS
OF POOR QUALITY

3 Unix is a trademark of AT&T Bell Laboratories.

. ' Megaprogrunmihg Vision 2

3 A Conceptual Model for Megaprogramming

library and DSSA links,

design structure,

access rights,

configuration and version data,
hypertext paths,

metric data,

requirement specification fragments,
PDL texts, o
interface and architecture specifications,
design rationale,

catalog infcrmation, and

search points.

2.2 Megaprogramming Software Interchange

“Software Interchange = Software Team + Convention + Repository + Exchange.” — Bill Scherlis, at the
ISTO Software Technology Community Meeting, June 27-29, 1990.

The goal of the megaprogramming software interchange is to “enable wide-area commerce in software compo-
nents{21]". The megaprogramming software interchange, which is integrated with the megaprogramming software
team, consists of the following elements:

+ Conventionalization — currently, conventions are emerging. It is desirable to create a cooperative decision
and consensus mechanism that supports adaptable, multi-configuration libraries, which present a standard
search capability.

« Repository/Inventory— currently, repositories support code storage only. It is desirable to retain, assess,
and validate other software assets such as architectures, test cases, specifications, designs, and design ration-
ales.

+ Exchange/Brokerage — current intellectual property rights.and government acquisition regulations are sti-
fling a software component industry. It is desirable to populate certain application domains (via DSSA)
and to support the creation of an electronic software component commerce by defining mechanisms for
access control, authentication/certification and establishing composition conventions.

The megaprogramming component interchange expects intially to draw software components from the reuse
libraries in STARS and DSSA with future support derived from POB, and CPS/CPL (MIF).

3.0 Conceptual Model for Software Components

“Before components can be reused, there needs to be components to reuse.”

As discussed in the previous section, megaprogramming requires the definition of proven, well-defined compo-
nents that are implemented according to software composition principles. This section presents a formal frame-
work for developing reusable software components that leverage the compositional capabilities of the
megaprogramming language LILEANNA (covered in the next section of this paper). A conceptual model{24] is
described that distinguishes between three distinct aspects of a software component:

I. the concept or abstraction the component represents,

2. the content of the component or its implementation, and

3. the context that component is defined under, or what is needed to complete the definition of a concept or
content within a certain environment.

These three aspects of a software component make the following assumptions about their environment:
1. There is a problem space (application domain) that can be decomposed into a set of concepts (or objects if

one prefers using an object-oriented paradigm).
2. There is a solution space that is characterized by the contents (implementations) of the concepts.

ORIGINAL PAGE IS
OF POOR QUALITY

Megaprogramming Vision 3

4 A Conceptual Modei ..c Megaprogramming

3. The solution space is populated by several different implementations, or “* .parameterized*” implementa-
tions that can be instantiated by different contexts within the solution space.

Before proceeding further into the material in this section, it is important for one to realize the subtle implications
that “dynamic binding” has on one’s approach to programming. The conceptual model described in this section
assumes a programming language and environment with all binding of parameters done prior to run time (with
the exception of actual parameters passed to subprogram operations). The model recognizes that binding can
occur at or before compile time, and at load/link edit time. This view of binding, to some readers, may appear
limiting (which, in some sense, it is), but this limitation, in reality, is a trade-off for early error detection (strong
typing), which, in some application areas, is considered to be of greater importance.

The rest of this section defines the terms context, content, and concept, in more detail and describes their relation-
ships to modularization, specification, interface design and parameterization.

3.1 Three Aspects of a Software Component

This conceptual model for software components is motivated by the need to develop useful, adaptable, and reli-
able software modules with which to build new applications. These three needs are addressed individually by the

model.

1. A useful component meets the high-level requirements of at least one concept necessary to design and
implement a new software application.

2. An adaptable component provides a mechanism such that modules can be casily tailored to the unique
requirements of an application.

3. A reliable component is one that accurately implements the concept that it defines.

This conceptual model for software components, referred to as the 3-C model, is based on three aspects of a soft-
ware component: concept, context, and content. These three terms are addressed individually in the subsections
that follow.

3.1.1 Concept

“Domain analysis is the building up of a conceptual framework, informal ideas and relations; the
formalization of common concepts.” — Ted Biggerstaff, MCC.

The concept represented by a reusable software component is an abstract description of “what” the component
does. Concepts are identified through requirement analysis or domain modeling as providing the desired
functionality for some aspect of a system. A concept is realized by an interface specification and an (optionally
formal) description of the semantics (as a minimum, the pre- and post-conditions) associated with each operation.
An Ada package specification (operations, type and exception declarations) for a stack abstract data type, with its
behavioral semantics described in Anna[14], is an example of a reusable software concept.

3.1.2 Content
“The ability to corvert ideas to things is the secret of outward success.” - Henry Ward Beecher.

The content of a reusable software component is an implementation of the concept, or “how” a component does
“what” it is supposed to do. The software component conceptual module assumes that each reusable software
component may have several implementations that obey the semantics of it’s concept (e.g., operational specifica-
tions are the same, but the behavioral specifications are different). The collection of (28) stack packages found
among Grady Booch’s[3] components is an example of a family of implementations for the same concept (stack).

4 Perhaps “generalized” is a better word.

E- 3

Conceptual Model for Software Components 4

5 A Conceptual Model for Megaprogramming

3.1.3 Context

“Understanding depends on expectations based on familiarity with previous implementations.” — Mary Shaw,
SEL

One of the failures of software reuse is that user’s expectations of a reusable software component do not meet the
designer’s expectations of the reusable software component (the square-peg-in-the-round-hole syndrome). By
explicitly defining the context of a reusable software component at the concept and content level, and formally
specifying its “domain of applicability”, the user can better select and adapt the component for reuse.

The context of a reusable software component takes on three dimensions:

1. the conceptual context of a reusable software component — how the interface and semantics of the module
relate to the interface and semantics of other modules,

2. the operational context of a reusable software component — what the characteristics of the data being
manipulated are, and

3. the implementation context of a reusable software component — how the module depends on other
modules for its implementation.

Parameterization, inheritance and importation of scope through the use of abstract machine interfaces are all lan-
guage mechanisms that assist in separating context from content. Within the framework of the 3-C model, one
uses these language constructs as follows:

1. one specifies the conceptual context of a software component by using inhentance to express relationships
between concepts (module interfaces). This occurs when two concepts share the same syntax and seman-
tics.

2. one defines the operational context of a software component by using genericity to specify data and oper-
ations on the data being manipulated by a module (at the conceptual or implementation level).

3. one decides on the implementation context of a software component by selecting the operations to be used
for and by the implementation of a module. These operations are external to the component. Inheritance
or importation of scope are the two languages mechanisms that support the definition of a module’s imple-
mentation context. '

One should note the explicit separation of the roles of code and type inheritance in the model. Type inheritance is
used to express the conceptual context of a module. The conceptual context of a software module forms a true
partial order in that the concept inheriting another concept “is a” subtype of the latter concept. Code inheritance
is used as an implementation mechanism and may or may not be the same as the type inheritance used to express
the conceptual context of the concept associated with the software component for which the implementation is
being created.

An example of conceptual context is a stack that can be used to describe the interface of a deque (double ended
queue). The operational context for a deque is the type of the element being stored. The implementation context
of a particular deque implementation might be a sequence abstraction. That is, the implementation would be
designed to refer to operations in an abstract machine interface found in a sequence concept, which could have
several implementations (e.g., array or linked list). Alternatively, the deque could be indirectly implemented (i.c.,
generated in the megaprogramming sense) by simply

1. renaming some of the operations in an implementation of the stack (i.c., Push and Pop would become
Push_Right and Pop_Right),

2. adding some new operations (Push_Left and Pop_Left), and

3. inheriting the rest (c.g. Print, Length, Is_Cmpty, etc.).

Using the syntax of LILEANNA, the following megaprogram would generate the (parameterized module) deque
described above: 7

make Deque[Triv] is
Stack [Triv] * (rename (Push => Push_Right)
(Pop => Pop_Right)
(Stack => Deque)
* (add Push_Left, Push_Right)
end;

Conceptual Model for Software Components 5

6 A Conceptual Model for Vlegaprogramming

- -

The selection of an implementation, or the content of the concept is determined by trade-offs in context. Clearly,
knowing the characteristics of the type of data structure being manipulated will lead to more efficient implementa-
tions. This can result in the population of a reuse library with several efficient implementations of the same
(parameterized) concept, each tailored to a particular context. At design time, a programmer could identify the
concept and define the context it is being manipulated under based on requirements or operating constraints. At
implementation time, the programmer could instantiate an implementation of the concept with the conceptual
contextual information plus any other contentual contextual information necessary.

Separating context from concept and content complements the work of Parnas[19] in suggesting that the quality of
: sofgware can .be improved by molatm_g change. It has been demonstrated that software is more reusable, or more
easily maintained, if the types of possible modifications to the software are taken into consideration at design time.

4.0 LILEANNA

LILEANNA (LIL Extended with ANNA (Annotated Ada) [14]) is an implementation of LIL (Library Intercon-
nect Language), proposed by Joseph Goguen [9] as a MCL (Module Composition Language) for the program-
ming language Ada[25]. LIL is a language for designing, structuring, composing, and generating software systems.
It is based on the work of Goguen and Burstall on the language CLEAR[4] and Goguen on OBJ[8]. LIL was first
introduced at the Ada Program Libraries Workshop in Monetary California. It was later refined for publication in
IEEE COMPUTER]10]. Since then it has been the interest of several researchers{7, 12, 13, 24].

The primary design goals of LIL were:

to make it easier to reuse software written in Ada,

to facilitate the composition of Ada packages,

to support an object-oriented style of design and documentation for Ada,

to rapidly prototype new applications by integrating executable specifications with the controlled manipu-
lation of source code,

to avoid recompilation, and

to support maintenance of Ada programs and families of programs.

A RN

The power of megaprogramming in LILEANNA centers on the ability to compose new packages with package
and subprogram expressions via the make statement. Existing packages may be manipulated through package
expressions to specify the instantiation, aggregation, renaming, addition, elimination or replacement of operations,
types or exceptions.

LILEANNA supports the structuring and composition of software modules from existing modules. One can

|. instantiate a parameterized module to create

a. implementations of operations,

b. a simple pack:ge/module, or

c. a parameterized package/module (generic).
2. Compose/structure modules by .)

a. combining other modules (inheritance and muitiple inheritance) (e.g., merging two module’s oper-
ations and types),
adding something® to an existing (inherited or instantiated) module (e.g., adding an operation),
removing something from the interface of an existing module (e.g., hiding an operation),
renaming something (e.g., purely textual changing the name of operation in an interface),
selecting from a family of implementations, or
replacing something in an existing module (i.¢., a pure swap — a remove and add combination).

-0 Q.0 T

The result of evaluating a LILEANNA composition/megaprogramming statement (i.c., a make statement) is an
executable Ada package specification and body that either is

I. a “stand-alone” flat module (nothing imported), or
2. a hierarchy, with selected functionality imported and perhaps repackaged.

Note that since there is no inheritance in Ada, composition that uses inheritance will need to cither import all
modules in the inheritance hierarchy (being careful to rename those which might result in ambiguity), or include

$ Where “something” is a sort/type, operation, exception, or in some cases, an axiom.

Conceptual Model for Software Components 6

iy

7 A Conceptual Mode! for Megaprogramming

all necessary functionality directly in the implementation (package body). In either case, the resulting user inter-
face (package specification) should not be cluttered by such details.

4.1 Formal Foundations of LILEANNA

LILEANNA has its formal foundations in category theory® and in initial and order-sorted algebras. These con-
cepts form the basis for advances in algebraic specifications and type theory. Many type systems are based on the
concept of an algebra. An algebra defines a set of values and the operations on them just as an abstract data type
defines the data of the type and provides operations on them.

Program semantics in LILEANNA are expressed in first order predicate calculus rather than using re-write rules (a
la OBJ) as a way of implementing conditional order-sorted equational logic.

4.2 LILEANNA Language Constructs and Examples

LILEANNA is a language for formally specifying and generating Ada packages. LILEANNA extends Ada by
introducing two entities: theories and views, and enhancing a third, package specifications. A LILEANNA
package, with semantics specified either formally or informally, represents a template for actual Ada package spec-
ifications. It is used as the common parent for families of implementations and for version control. A theory is a
higher level abstraction, a concept (or a context), that describes a module’s syntactical and semantic interface. A
view is a mapping between types, operations and exceptions.

Programs can be structured/composed using two types of hierarchies:

1. vertical: levels of abstraction/stratification, and
2. horizontal: aggregation and inheritance (type and code).

LILEANNA supports this with two language mechanisms

1. needs: import dependencies, and
2. import, protect, or extend: three forms of inheritance, and includes, a subtyping construct.

Theories are an encapsulation mechanism used to express the requirements on generic module parameters. Theo-
ries also play a role in building horizontal and vertical hierarchies by defining the interface requirements for
modules that later can be instantiated with a more concrete implementation. Views map theories to theories, or
theories to packages, or pieces of packages. One powerful feature of LILEANNA is the encapsulation of parame-
ters in theories. With this capability, the semantics of parameters can be formally specified and the domain of
applicability of a module can be explicitly qualified.

The generative capability of the LILEANNA is provided by package expressions, a “super make™’ feature for
creating new packages from existing packages through horizontal, vertical and generic instantiation. Package
expressions manipulate Ada packages and their contents based on their relationships to LILEANNA packages,
theories and views. The basic operations supported are importation in the form of inheritance, specialization in
the form of instantiation, generalization, and aggregation. Finally, the contents of modules can be manipulated
through * package operators by indicating what entities are being added, hidden, renamed, or replaced.

LILEANNA goes beyond the Ada instantiation capability in that generic packages can be composed to create new
generic packages without themselves being instantiated. Partial instantiations are also possible. A view is used to
instantiate a generic package. Default views can be computed if only package name is supplied. Alternatively,
mappings of formal to actual parameters may form an in-line view as part of a package expression.

The following example illustrates several LILEANNA language constructs. In the example, the package
Integer_Set is made from a parameterized LILEANNA package, LIL_Set. This example is very similar to the
instantiation of an Ada generic, except that in Ada, the instantiation process is done at compile time. In
LILEANNA, the generic instantiation is done prior to compile time. This results in Ada source code which is
ready to be compiled, composed or further instantiated.

§ Goguen has suggested that LILEANNA is based on another 3-C model — Category theory, Colimits, and Comma Catego-
ries. '

7 Make is a2 UNIX term and command for the process of selectively compiling and linking compiled outpuls to make an
executable module.

LILEANNA 7

8 A Conceptual Vodel for Vegaprogramming

make Integer_Set is LIL_Set[Integer_View] end;

Attention should be paid to the view (shown below), [nteger_View (from theory Triv to the Ada package
Standard), used in the make statement above. There is an explicit mapping between the type Element and the
type Integer. The point to be emphasized is that this mapping can be given a name and reused in other
instantiations.

view Integer_View :: Triv => Standard is
types (Element => Integer);
end;

Alternatively, as shown below, the instantiation could have been stated as

make Integer_Set is - - ,
LIL_Set [view Triv => Standard is types (Element => Integer);]
end;

In this case, the view does not have a name, but the mapping is explict to this particular instantiation.

The following example illustrates the use of horizontal and vertical composition. A generic package (Short_Stack)
is generated by selecting an array implementation (List_Array) of the list interface theory (List_Theory) needed by
the LILEANNA package (L/L_Stack). It is assumed that the LILEANNA package (L/l._Stack) has a compa-
rable Ada package (Stack) and that an explicit view may or may not exist between them.

make Short_Stack is
LIL_Stack -- inherit Stack Package (horizontal composition)
needs (List_Theory => List_Array)
-- supply array package (vertical composition)

end;

The following is an example of a make statement that instantiates the generic LILEANNA package Sort according
to the view Nat_Defauit (not shown), which maps the Natural numbers and the pre-defined linear order relation-
ship onto the theory of partially ordered sets.

make Sort_Lists_of_Naturals is
Sort[Nat_Default]
needs (ListP => Linked_List)
end;

An example of a more involved make statement using multiple inheritance and package operators follows. It is
based on an existing set of Ada packages that defines an Ada-Logic Interface[15] package for reasoning.

LILEANNA 8

9 A Conceptual Model for Megaprogramming

make New_Ada_Logic_Interface is
Identifier_Package +
Clause_Package*(hide Copy) +
Substitution_Package +
DataBase_Package +
_Query_Package*(add function Query_Fail (C: Clause;
' L: List_Of_Clauses)
return Boolean)
*(rename (Query_Answer => Query_Results))
end;

The result is a merged package specification where,

I. the Copy operation is not available on Clauses,

2. an additional operation, Query_Fail, now augments those inherited from the specification, Query_Package,

3. the Query_Answer operation is not available in the resulting interface, instead, the Query _Results operation
can be invoked.

5.0 Conclusion

“We should stand on each others shoulders, not on each others feet.” — Peter Wegner{26]

Megaprogramming is a new programming paradigm that requires both a critical mass of software components and
a disciplined approach to program design and specification. This paper has presented one approach to megapro-
gramming that is based on a formal model (the 3-C Model) for developing reusable software components. This
model gives insight into the relationships between type inheritance, code inheritance, and parameterization that is
essential for providing the adaptability and interoperability of software components.” The corresponding imple-
mentation, LILEANNA, serves as a valuable vehicle for exploring megaprogramming concepts.

6.0 References

1. Berard, E.V. Creating Reusable Ada Software. Proceedings of the National Conference on Software Reus-
ability and Maintainability, September 1986. .
2. Boehm, B. DARPA Software Strategic Plan. Proceedings of ISTO Software Technology Community
: Meeting, June 27-29 1990.

3 Booch, G. Software Components with Ada. Benjamin Cummings, 1988.

4, Burstall, and Goguen, J.LA. The Semantics of CLEAR, a Specification Language. Proceedings of the
, 1979 Copenhagen Winter School of Abstract Software Specification, pages 292-332, 1980.

5. Conn, R. The Ada Software Repository. Proceedings of COMPCONS87, February 1987.

6. Gabriel, R.P. (editor). Draft Report on Requirements for a Common Prototyping System. in ACM

SIGPLAN Notices, 24(3):93-165, March 1989.

7. Gautier, RJ. A Language for Describing Ada Software Components. Proceedings of Ada-Europe Con-
ference, May 26-28 1987. :

8. Goguen, J.A. Some Design Principles and Theory of OBJ-0, a Language for Expressing and Executing
. Algebraic Specification of Programs. Proceedings of Mathematical Studies of Information Processing,
pages 425-473, 1979.

9. Goguen, J.A. LIL - A Library Interconnect Language. in Report on Program Libraries Workshop. SRI
International., pages 12-51, October 1983.

LILEANNA 9

10

A Conceptual Model for Megaprogramming —

10.

1.

12.
13,
14.
15.
16.

17.

19.
20.
21.
22.
23.
24.
25.

26.

-

Goguclr;sg.z\. Reusing and Interconnecting Software Components. [EEFE Computer, 19(2):16-28, Feb-
ruary .

Goguen, J.A. Hyperprogramming: A Formal Approach to Software Environments. Proceedings of Sym-
posium on Formal Approaches to Software Envrionment Technology, Joint System Development Corpo-
ration, Tokyo, Japan, January 1990.

Harrison, G.C. An Automated Method for Referencing Ada Reusable Code Using LIL. Proceedings of
Fifth National Conference on Ada Technology and Fourth Washington Ada Symposium, March 17-19 1987.

Liu, D.B. A Knowledge Structure of a Reusable Software Component in LIL.. Proceedings of Sixth
National Conference on Ada Technology, March 14-17 1988.

Luckham, D. and vonHenke, F.W. An Overview of Anna, A Specification Language for Ada. [FEE
Software, 1(2):9-22, March 1985. -

Madhav, N. and Mann, W. Abstract Specification of Automated Reasoning Tools: An Ada-Logic Inter-
face, Program Analysis and Verification Group, Stanford University, 1989.

Mcllroy, M.D. Mass Produced Software Components. Proceedings of NATO C anfr’rence on Software
Engineering, edited by Naur, P., Randell, B. and Buxton, J.N., pages 88-98, 1969.

McNicholl, D.G., Palmer, C., et al. Common Ada Missile Packages (CAMP) Volume I: Overview and
Commonality Study Results, McDonnel Douglas Astronautics Company, :ATFATL-TR-85-93, May 1986.

Mettala, E.G. Domain Specific Software Architectures presentation at ISTO Software Technology Com-
munity Meeting, 1990.

Parnas, D.L. A Technique for Software Module Specification with Examples. Communications of the
ACM, 15(5):330-336, May 1972.

Ruegsegger, T. Making Reuse Pay: The SIDPERS-3 RAPID Center. [EEE Communications Magazine,
26(8):816-819, August 1988.

Scherlis, W.L. DARPA Software Technology Plan. Proceedings of ISTO Sofmare Technology Commu-
nity Meeting, June 27-29 1990.

Taylor, R., et al . Foundations for the Arcadia Environment Architecture. Proceedings of Third Sympo-
sium on Software Development Environments, pages 1-13, November 1988.

Tracz, W. The Three Cons of Software Reuse. Proceedings of Fourth Woerkshop on Software Reuse
Tools., 1990.

Tracz, W.J. Formal Speciﬂc&tlon of Parameterized Programs in LILEANNA, PhD thesis, Stanford Uni-
versity, 1990. ln progress.

U.S. Department of Defense, US Government Printing Office, The Ada Programming Languagc Refer-
ence Manual, {983,

Wegner, P. Varieties of Reusability. Proceedings of ITT Workshop on Reusability Programming, Sep-
tember 1983.

References 10

Ada Net

John McBride
Planned Solutions

AdaNET

Presented to
RICIS '90 Software Engineering Symposium

‘November 8, 1990

Presented by
John McBride
- Planned Solutions, Inc.

AdaNET Program

« Five Year R & D Effort to Advance the State of Software
Engineering Practice

+ National Facllity in West Virginia to Increase U.S.
Productivity, Economic Growth & Competitiveness

« Enhance Existing AdaNET System to Provide a Life Cycle
Repository for Software Engineering Products, Processes,
Interface Standards, & Related Information Services

Planned
AdaNET 1 Solutions, Inc.

Purpose and Scope

» Transfer Software Engineering Technology Within the Federal
Sector & to the Private Sector

« Reusable Software Components Useful in All Phases of
Lifecycle

. Englneorlng Process Descriptions for Developing
a aptable & Rellable Systems & Software Worthy of
ouse

+ Interface Standards

- More Consistency in System Features,
- Simpler System Integration,
- Aid in the Use of Metrics as Quality Predictors

+ Related Information & Services

Software Engineering Help Desk
Conference Listings

References

Networking to Other Databases
E Malil

L P Ianned
AdSNET 2 Solutions, Inc.

AdaNET Goals

. Establish a National Center for the Collection of
Software Engineering Information

. Provide On-Line Life Cycle Repository

» Promote a Cultural Change Necessary to Improved
Quality & Efficlency

« Provide a Platform for Research In Technology

Transfer
Planned
AJaNET 3 Solutions, Inc.
AdaNET Benefits
« Decrease Software Costs o
- Improve Quality of Software Systems
Planned

AdSNET 4 Solutions, Inc

AdaNET is a National Resource

Software
Reuse
Expert

AdJanNET
System

eoy

west
Virginia

Expert

Accessible Via InterNET and TeleNET Public Access Dial Up

—— ——— Planned
AdaNET Solutions, In

Users of AdaNET

Small Companies - Reusable Components and Software
Engineering Help Desk will Allow These
Companies to be More Competitive

Large Companies - Large, Complex Systems can be Buiit
More Reliably and at Lower Cost with
Reusable Components

Academia - Facilitates Teaching and Research in Software
Engineering With Reusability

U. S. Government - Spinback Benefits to Government Software
Developers

Planned
AdsNET & Solutions, In.

Major Research and Technology Issues

Application and
Dissemination Policles Software Reuse Strategles AdaNET Architecture
< Int ency Agreements « D . AdaNET Context
nteragency Ag omain Modification . Operating Modes
+ Customer Licenses . Type . Classification + Security and Integrity
+ User Interface
- Data Rights + Granularity + Retrieval .
AdaNET Services to Accass
. Title and Use Guarantees + Selection . Assistance Resources
+ Liability » Configuration - Qualification AdaNET Resources
+ information
+ QOrganization Type . . + Products
. + Experts
+ Charges and Profits
+ International Clients
+ Military Restrictions
SE e SR Planned
AdSNET 7 Solutians, Inc
AdaNET Enhancements

AdaNET Service Version Two (ASV2) Current System
- Hosted on Data General

- CEO Office Automation Product Organized Files in Drawers
and Folders

- Keyword and Textual Search
ASV3 (late 1991)
- Unix Based

- Integrate JSC/Barrios Developed Autolib & Army/RAPID
Derived Technologies

- Natural Language Query, Facets, Keyword Search
ASV4 (late 1994)
- Object Management Support for Full Life Cycle Traceability

—————————— Planned
AdSNET 8 Solutions, Inc

AdaNET User Registration

Mountain NET
P.O. Box 370
Dellslow, W.V, 26531
(304) 296-1458
(304) 296-6892 FAX
1-800-444-1458 help desk (Peggy Lacey)

Planned

AdSNET 10 Solutions, In

Current AdaNET Products and Services

Beusable Software Publications
Army Ada Sottware Repository (227 » Citations (678)
STARS Repository (In process) » Newsletters (19)
NASA/JPL Components (In process) + Standards (92)
Broducts Conferences
+ Services (40) + Announcements (112)
+ Software (141) + Paper Calls (20)
E-Mall ‘ News
+ Abstracts (129)
» User Contributions (21)
Iraining Contracts
+ Guided Study (102) + Awards (161)
+ Seif Study (21) *» RFPs (17

* < Functional Areas
~**-Unique Flles

Planned

AdaNET § Solutions, In.

Summary

Life Cxcle Approach to Reuse Can Provide a Significant Impact
on Software Productivity

Software Engineering Information Provides Knowledge Transfer

AdaNET is an Operational Program with a Prototype Development

and Evaluation Cycle

Planned

AdaNET 11

Solutions, In

POSIX and Ada Integration
in the
Space Station Freedom Program

Robert A. Brown
The Charles Stark Draper Laboratory, Inc.

Overview

POSIX Overview
POSIX Execution Model

Ada Execution Model

SSFP Flight Software Ada Requirements
POSIX/Ada Integration

POSIX Overview

Portable Operating System Interface
for Computer Environments

IEEE sponsored standards development effort
e Voluntary participation
e Concensus standard (75% required for approval)

Purpose
e Define standard OS interface and environment

s Based on UNIX
« Support application portability at source code level

Family of open system standards

@

POSIX Working Groups
P1003.0: Guide to POSIX Open Systems Environment
P1003.1: System Interface
P1003.2: Shell & Tools
P1003.3: Testing & Verification
P1003.4: Realtime
P1003.5: Ada Language Bindings
P1003.6: Security Extensions
P1003.7: System Administration
P1003.8: Networking
P1003.9: Fortran Language Bindings
P1003.10: Supercomputing

P1003.11: Transaction Processing

©

POSIX Execution Model
P1003.1

POSIX process

* Address space :

« Single thread of control executing in address space
* Required system resources

Process management

« Process creation -- fork() and exec()
* Process group and session

« Process termination -~ exit(), abort()

Process synchronization
« Signals -- sigsuspend(), pause()
« Wait for child termination -- wait(), waitpid()

Process delay
e alarm() and sleep()

POSIX Execution Model
Realtime Extensions
e Priority scheduling
e Binary semaphores
* Shared memory
* Message queues
¢ Asynchronous event notification

o Clocks and timers
e High resolution sleep
e Per-process timers

Ada Execution Model
Language Definition

Ada program

e Single address space

e Multiple threads of control
* Required system resources

e Task management
¢ Task creation -- elaboration, allocator evaluation
o Organization -- task master
e Task termination -- normal completion, exception

Task synchronization
e Rendezvous

Task delay
o Ada delay statement

SSFP Flight Software Requirements

Multiple real-time programs sharing same processor
Fixed priority, preemptive scheduler

Single level dispatcher

Non-plocking i/o and system calls

Ability to schedule tasks for periodic execution

Ability to schedule tasks to respond to specific events

Ada Execution Model
Realtime Extensions

Scheduling
e CIFO cyclic scheduler

Binary semaphores

Shared data template

Precision time services

Event notification
¢ CIFO event management

©

POSIX/Ada Integration
The Problem

e POSIX looks from program outward
« Semantics defined for processes only
» Single thread assumption

e Ada looks from program inward
« Semantics defined for tasks within a program only
 Single program assumption

« Integration of POSIX and Ada
« Extend POSIX semantics to multi-threaded processes
e Extend Ada semantics to multiple programs

POSIX/Ada Integration
A Solution

« Extension of POSIX semantics to multiple threads
o Define system interface for threads
« Redefine existing services for muitiple threads
e Signals '
« Fork() and exec()
« Per process static data
« Semaphores, events and timers

« Extension of Ada semantics to multiple programs
o Global task scheduling
« Definition of shared package semantics
« Ada interfaces to multiprogramming services
e Process control -- start, stop
« Interprocess communication

©

-
Session 4
Software Engineering: Issues
for Ada's Future

Chair: Rod L. Bown , University of Houston-Clear Lake

Assessment of Formal Methods
for Trustworthy Computer
Systems

Susan Gerhart
Microelectronics and Computer Technology Corp. (MCC)

4 |
n /453688”)64-/? f
(o

Formal YUcthods £

T ree
/'wwf/tz Sy Skenes

O vsan Gerhart

MCL Foruud Metheds /
Soﬁfwwreak«.oksy

. m v |

Cz

“Applied Mathematics of Software Engineering”
college sophomore through Ph.D. level

Use
logic, set and sequence notation, Tnduchon
finite state machines, other formaiisms mju.u.J&,
In Sym‘e/ ‘e

¢ system models reaSoning

e specifications
e designs and implementations

For NEA Comp. Sec.
e highly reliable, secure, safe systems d.{(M D
e more effective production methods 7e&, QFCS
¢ software engineering education SéEL

In levels of use

guidance: structuring what to say Mu

rigorous, formal: , [
generated and worked proof obligations
mechanized: using proof assistants d.s.

MCC Formal Methods Transition Study 4P Session 1

A NonExecutable Spec Language: ASLAN

« State-transition based

« First order logic with equality

» Sections

» Types (builtin and user constructed)
» Constants & Variables

» Definitions & Axioms

» Imitial Condition

» Invariant

» Constraint
» ‘Transitions M
« Generates verification condit'iornsw
» IC=>INV |
» Foreacht,INV’ & PRE’(t) & POST(t) =>INV & CON
 Limited type checking
+ PASCAL-like syntax
» Levels (of refinement)

- » Additional VCs
o Derived from Ina Jo research (R. Kemmerer at UCSB)

F

FMTS Warkchan ~ M frne 1900 L

Portion of an ASLAN Spec

'/TYPE

book is structure of (
title : string,
author : string,
bh"ﬁ subject : string),
Copy,
copies is set of copy
VARIABLE ...
~ db: library,
staff: users,
berrower(copy): user,
next_id: pos_imit

INITTAL
w“ db = empty & staff = empty & next_id=1
INVARIANT
Pro?* forall c:copy
" (cisin db -> available(c) xor borrower(c)~=noone)
&

cardinality(db,next_id-1)

TRANSITION check_out(c:copy, u:user, s:user)
w ENTRY c isin db & available(c) & s isin staff &
' under_lim(u)
EXIT borrower(c) becomes u

FMTS Workshop 20 June 1950 Gy

An ASLAN-generated Veriﬁbation Condition

consistency conjecture for check_out(c:copy, u:user, s:user):

(forall c:copy
¢ isin db’ -> c{available] xor c{borrower] ~= noone
* b &
fnﬂ-""" c isin db’ & c{available] & s isin staff’ & under_lim’(u)

pebore &

~c[available] & c[borrower]=u

v &
r,wt""' db = db’
k &
staff = staff’)

9.->

(forall c:copy
fﬂ \P"‘ ¢ isin db -> c[available] xor c[borrower] ~= noone

&
W true)

| e, iﬁdicating that no back-
»aesshasibeen selecied for exe-
O interTupts are active, the pro-

ile, and the Select operation
o spontancously. It is specified

——ee.

g= none

wnd” = background

r

(=3
meler” = OlneHandler

1an a.part of the interface be-
kernet and an application, Se-
wernaboperation of the kernel
appen whenever its precondi-
. Fhe:preconditon is '
mome A ready »Q

ssor must be idle, and at Jeas
‘ound/process must be-ready to
Istpart of-this.precondition is
icidy, and the second partisim-
.-predican:

recdy

valoe of current is selecred
.burshe specification does not
* chedce is made — it is non-
ic. Fhis nondeterminism lets
catiom sy exactly what pro-

cssevin-a-cerain state, it will|
*-tife same process —it
ondetermirristic if you pay

ie-leerme selects the new cur-

the specification szys thae it
jecamse of the static schedul-

ok deermines dhxaficr e background a0d read. nd he cwr |
' psse Seffwseds St 1990

mmmmmdhm«m%hmmmm
Hera.ldeﬁmodymonyn'bdstsedinﬂisarﬁdo:

Sets:
S:PX Sis declared as a setof X's.
xe$S Xisamemberaf S
xeS xis not amember of S,
SgT Sisastbsetd'kEvcyn‘\ernbardSisdaoh T. .
SuT The union of S and T: it contains every member of Sor Tor both.
ST The intersection of S and T It contains every member of both Sand T,
S\T The difference of Sand annmydeSmmosabonT
7] Empty set X contains no members.
{x} Singieton set: k contains just x.
N The set of nakual mavibers Q, 1, 2, ...
S:FX Sis deciased 28 a finte set of X's.
max(S) mmauwudms
Functions: R
f: Xo—ppY fsmaammmmxnrmhnmm
tiorromip, 23).
dom f The:domainiofi/: the:setofvaiues xror which Mx) s defined.

Afunction like £ excepe that xis rermoved vom ils domain.
Logic:
PAQ Pade:ttismnifbuhPmemm.
P=Q PhﬂeO:lhmimOhmaPkﬂu

8S°=6S NowmdMSMhmw

the process identifier and a flag,
takes one of the values set or

asie

*| background’ = background \ {curremd

running & background

FLAE :>= sat| dear ' '

= \ (currend 7 ..
ready ,"_":7“‘ SetReady operation is:
OintHandler’ = 8 IntHandler ——SetReady—

For this operation to be permissible, the flog= FLAG g Poo:‘ Py
processor must be running a background « bk Qu
process. This process is removed from ﬁ

fla? = set =5 rrady = radv L [}

A Cruise Control

Stokechuds =

CRUISE-ACT

CRUISE-MON

ACTIVATE

CRUISING

-

MON
STOP-MARSCHED J

twoughout PEDAL-MON - TEST-PED-DEF

groughout SPEED-MON - MAINTAIN-SP Oy

dwoughous SELECT-SP SELECT-SP O oMy

throughout CRUISE-MON - TEST-PED-DEF and CHECK-SP _ Pookl PAce
STOP-TEST - QUg, . &8

SCHED-PED - schaduleNsart!(TEST- DEF).a seconds)

SCHED-MAIN - scheduleXnartt (MAINTAIN-SP).a seconds)

3 ‘W

Figure 4: Cruise State Zoom-in

STATEMATS,
)~ Lepry,Pre

me‘_"_ A7) [eofbed

Tools CaEIogue

Languages

« NonExecutable:
Z, VDM (at least 2 flavors), ASLAN, Larch, Estelle, ...

« Executable: (prototyping)
Miranda, OBJ, me too, StateChart, Caliban,D, P‘Ec_)_l_og

Static Analysis
FUZZ, ASLAN + (all executable systems)

Language-tailored Environments
Raise, Larch, Gist, Statemate
Ee—

—————
Concurrency-cemtered
CSP, CCS, Unity, Petri-nets, Spec, Lotos, ...

Temporally focused
L.0, ASLAN-RT, RTL, Timed CSP, Tempura, TempLog,

Theorem Provers
2 e, HOL, Clio, m-EVES, B, Isabelle, OBJ,
EHDM, Gypsy, uRAL™.

* *k¥

Sample Applications in Progress

MCC Formel Methods Traasition Study X

Project Parties Problem Status
CICS Oxford PRG Transaction Released,
IBM Hursley Processing Measured (?7)
Cleanroom IBM FSD Embedded, Released
NASA SEL Restructurer Evaluated
ZEE Tektronix Oscilloscopes On-going
Avalon/C++ | C-MU Atomicity Preliminary
GKS, British Standards | Graphical, Published
OA Doc. Institute Documents :
Hypertext Dexter Group Hypertext Report
Ref. Model Deamark Coancepts 'VDM90
SXL GTE Labs Protocols | In use
L.0 Belicore Protocols In use
CASE Praxis Object Report,
Manager product
Anti-MacEnroe | Sydney Inst. Teanis Line Repoct
Device Technology Fault Detector (Occam,CSP)
Security Honeywell LOCK In progress
Ford Aero. Multi-net Gateway | ”
Digital Secure VMS ”
TIS Trusted Mach ”
VIPER RSRE, Microprocessor Reports
Cambridge Tools Newsletter
Verified CLinc Microp, assembler, | Reports
Stack t 0.S.
Oncology U. Wash. Cyclotron Starting
Reactor Parnas, Shutdown Reports,
Control Ontario Hydro Certification Certified
Murphy U.C. Irvine) Safety Reports
SACEM | French RR Train Control ICSE12
Session 2

Tracet

| 'S/Qna'md.s

S’ecum{y . On.n.se Bog“" -NSA
Sty
MoD 008S/5% (M:Aw‘n)
/7“!4”/ QMIY,S;': + |
Sty - erihend development Preces

SakZIT - goals (v DTT)
B ﬁ%a;::jly Sond

" 9eneric o
Sechor - *MPO'M"M’.“
&pph'e.foy

’ 'Qascblc

* M‘/Ounu'/u;md

£ NIST Stamdents]
MoFivad ona |

Sefe Systems |
fﬁql\, [M‘cj r-efy Mdud‘?y com'ﬁ 7"0\
Trade advesfeqe (/9?2) |

¥ J

ce

SOFT NEWS

hmwﬂhw hhwﬂa\'xsm

|

Edtor: Galen Gruman
Soffware

! 0662 Los Vaqueros Cir.
Los Alamaca, CA 90720
Comomad. ot one

Sourcemal cae g3

Software safety focus of new British standard

Calen Griman, Soft News Editor

The British Defence Ministry expects
to issue 2 a new soltware-safety siandard
this spring that will require the use of
formal methods and machematical
verification on alf safetycritical software.
Onk developers who prove that their
software is not safetv-critical will be
exemptfrom the requirements,

The standard, MoD-5td-0055, will tan
the use of assembly language, limit the
use ot high-level languages like Ada to
safe subsews, and require the use of static
analssis. [talso sets standards for project
engincers. [twill require that an engi-
neer sign ofT on the sofeware’s safety com-
i engincer have taken
accredited formid-methods imsruction
within the past two vears, and thac an
independend engineer wich sionilar
3ccreditation abo sign off on the system,
This it similar to the responsibility and
requirements enforced on ystems-safety

incers for the overal progect.
m!ls'"hc 0055 standaed ﬂ::'f\cdfect
for two vears, during which time the
Defence Ministry will revise it on the
basis of industrv's experience. The intent
is to develop a long-term standard. said
Kevin Geary, a software consulant for
the British navy's procurement depart-
ment who is working on the 0055 stan-
dard. The ministry is also working on
MoD-Std-0056, a hazard-anahysis standard
that will help software developers deter-
minewhere to agrly formal methods
and mathematic verification, Geary
said. “Both mathematical verification
and hazard analysis must be performed
to provide software with acceptable risk.
Neither isadequate alone,” said Nancy
Leveson, a software-safcty expertand a
computerscience professor at the Uni-
versity of California at Irvine,

Pros of formal methods. The 0055 stan-
dard has been called a “Tandmark"by
thase in the software-safety and formal-
mcthods communities, who argue tha

uwig'n§ngcsponsibiﬁq to software engi-

May 1989

neers, as has been tradition in hardware
engineering, will help encourage
changesin tlevelopment methods thag
will help assure safe Nstems. Safetyis in-
cresingly important because software is
becnming a greater past of critical
svstems like aircraft conurots, medical
devices, nuclear-power plangs, earfywarn.
ing defense systems, and missite conuols,
they said,

v
safety-critical software,

matical analvsis of formal specificatdons
notations can be used to find errors in
the specifications, Leveson said,

The increasing number of tools like
Zed. Vienna Development Method,

e, and Malpas will help make the
implementation of formal methods possi-
ble becatuse these tools can perform
static analyses of information flow and
semantics quickly, rather than in the
years required with manual techniques,
Geary said.

Formal methods and mathematcal ver-

ification are often considered 00 diffi-
cult o apply, Geary conceded, “Therels
a lot of unease, but it’s quite surprisi
thatthere are 2 kot of key peophe viey e

come wround after looking a i, " he sajd.
Geary cited IBM s British developmen
center, which decided for commercial
TeONS — noyt for gmcrnmem or O(’h{?l’
outside requirements — o use the Zed
formal incthod on CICS developmeny,
“People’s resistance is based on igno-
rance.” Geary said,

Another source of resisance is the con.
fusion between formal, mathematical
methods and madvematicad correctness.
“Cinrrectnessisa meaningiess goal for
real wems. For ex .do vou have 3
‘correct’ urplame?” Levesom said. “A
more realisac and usefid goalis to build
3 wstem that satisfies agiven set of func-
tionad and mission requirements while at
the same time trving-to satisfy constraines
of safew, security, and-cost,” she said.

n comparedformal methods 1o
traditiona hardware engineering: “Engi-
neers build formal mathematica] modeis

 and then wse analysis methods 1o deter-

mirse whether the moded has certain
desired properties,” she said, “which
should be the role of formal methodsin
software engincering.” (Leveson's
“Safety as a Software Qualiey™ essay in this
issue’s QualityTime, on pp. 88-89, gives
more detils about this process.)

“Both software engineers and hard-
ware engineers specify design,” Geary
said. “The only difference is how tangible
[the product] is," he said.

Sdill, software engineers do face 2 bur-
den that their hardware couneerparts
generallydo nou the complexity of their
product, said Martyn Thomas, chairman
of Praxis Systems, a software-engineering
consulting firm in Bath, England, that
does much work in safety engineering.
Traditonal engineers kke bridge build-
crs “never had techniquesfor design,
which is more importane for software

ORIGINAL PAGE IS
OF POOR QUALTY

7,
N4 T b

DEFENCE STANDARD 00-55

“17. Specification

17.1 Safety Critical Software shall be specified using
tormal mathematical techniques. A specification of the
Safety Critical Software shall also be produced in clear
English. Both specifications shall be included as part
of the Procurement Specification. A list of formal

mathematical specification techniques is given in
Annex L.”

ORIGINAL PAGE IS

OF, POOR QUALITY

..<U§.N.Om.._,10... CCS, CSP, Temporal Logic,
Lotos

l/l_/ |

S
¥

Figure 1 Structure of the Framework

Components A Q 7 .
Hierarchy

- Torme ond Cancepts STANDARDS STAMDAROS STAMDARDS

ﬂﬂﬂﬂﬂﬂﬂ

™mS% 9(™MS

Fapompuz 3

3{}. ‘erwmﬂm

obb) UM ©

.N. ‘
PML Goydaq Frrpuos geor
SPopr O AMEAS o Aommuvy

A o.\g\w \.N\@%
0h8 ‘Wy -waix

¥ LTYYS

i5984s Juruoseal pijea

sa1aed piry) puw puodas 0} UOIBIISUCWIIP

AMIqui[e) puv 1quiop [enpisal jo uorytugodas
20u3piA9 (eanfjeue pue earndwo
uoisuaya1duton |

dxﬁ\anww |

Nueinsse

apod 316Mijok Jo Aqrindes
suolyesyipowt jo LyaBan

ss3301d dueuaurew jo Loy
uMisop Jurnp payrdads aduvudjuisw

prompavin dysaboper

uonyeiado Funinp paurejutewr LHuBajun

s[o1u0> JuswaFEURUl 9A1135[jo pue eAn I
s yuaradurod pue pajeaniown
juswefevew J01USS JO JUAUMWOD

x.\ tfﬁ.t\ é

ss9301d Juaurdojaadp pus juaweBeurws jo LHudaur

Loumsisuod jjas
Anxapduos jo yuswaBeuews
uoistd9ad pue Kyuep

290(5 Y YRS

uoleayads saystyes (9pod) uoyequewajdu

pawyap Eo-:uwa..a:_ pue Woje1d|b) 'IGi10eep ney

sWeAs dURUANUIRW pue uewny 'arem)jos '[edishid 35 swayshs [eusaxa jo uorjedyidads piea pue pauysp
sjusuoduwiod G4 394710 jo uoljesydads prjea puw pauysp

a1em1Jos 0} uoljedYdads g 4 Jo uolje[suel) pijeA

b s%\w Apyea

Lruamsuod jjas
Anxajdwos jo yueurafeuew
uoistoard pue Lyrep

“nlg *.Rm»\\

sa1nyed) £19)ue jJo uonwd

$8Aip00{qO-qns |

$OALDBIq() ute

ANaZejug paanssy IAI1ISHO ||e19A0
$2A303(qQ Jo Asvliling : a|qe]

Ay

ORIGINAL PAGE 1o
OF POOR Qu

clarity and precision

dlagrama, CTOCESE ST Ths rumentatlon

diagrams, algebra 3 transforms. discrete
equations; n&:ral language annotations;
structured natural language; subsets of

languages

formal ,
modelling; data flow "
diagrams; finite state
machines/state
transition diagrems;
structure diagrams

management of

abstraction; modularity; information

formal mathematical

complexity Biding; ftouctufed design technique modelling; data flow
diagrams; finite state
machines/state
transition diagrams;

_ structure diagrams
self comsisteacy of amimation — and Prototyping,/animaetion:
specification theonies; semantics far nom-mm; rewew simulation; feactional

and mq:ecb:on, exacution of paog ties — testing; formal
modelﬁng; Fagam
inspections; formal
design reviews
validity see next ladle
, o
FOV‘M‘/{ Sﬂ%o Zaqé . //’,&)‘% P YGinsa, Pace
) Fi

— ASAN - glaks Prnihon
Z

Sth-bas ec/

Kaveh — +Heones
ces, vuiry - eoneuriency

§MW - 'FIMJQ S:AJ-(-

Tools

TProverse 3

TR '
lyses = Teats

M.Qvlu.l *4:{-

Usabfe,

repraentauon, application speci

dlagrams algebra, z transforms, discrete
equations; natural language annotations;
structured natural language; subsets of
languages

syntax and semantics; graphical

management of
complexity

abstraction; modularity; information
1ding; structured design technique

formal mathematical
modelling; data flow
diagrams; finite state

machines/state
transition diagrams;
structure diagrams
self consistency of animation — proof of invariaats and prototyping/animation;
specification theories; semaatics for notations; review simulation; functional
and impem — | testing; formal
prototyping of selected properties; w mathematical
modelling; Fagan
imspections; focoad
design reviews
adequate refinement asoning: review /inspection; Fagan inspections; :
testing; static analysis; experimentation; formal design reviews;
‘experience in the ﬂ‘eid; diversity of tools formal peoof of |
and people; use of subset of programmiag peogram; saeak circuit |
language; languages that can cope with analysas; ’
different levels of abstraction walkthroughs;

functional testing

Seee,

‘ Treng faruﬁu

5,:“& rkplcwfih.

[}

ab—

e - Lud. Dfn.

K.4 Imtegrity of process

108 As in aay eagiacering endeavour, the imtegrity of the developmesnt and
management Process is essential to the achievement and assurance of integrity. There is a
requirement that the system is what it seems, that documentation is adequate and under
configuration control and that the claims made about the system are valid.

Objective: integrity of process
SubObj«Lim Techniques IEC techniques
active and effective QMS to ISO 9000; independent QA; checklists; Fagan
management controls | automated configuration management; inspections; formal
manual configuration management; clear design reviews

delineation of authority and responsibility
for safety; adequate project planning, cost
estimation and monitoring tools and
procedures

commitment of senior | awareness campaigns; certificatioa
management to safety | approval schemes: demonstration of
and quality economic beaefits; reguiatory inspection;
liability; stamdaeds; safety Culiyre
motivated and sempsicncy of kicx staf (~g to BCS Safety
competent staff Critical Curricula); experience in
application domain and of software
techniques used in project; qualification to

Chartered Engineer status; status and pay;
profesion: mt; certification;

safety cuiture

107 Note: Within this technical framework only recommendations concerning
management controls and competency of staff can be made. Other factors are importaat
and should be addressed during the project (eg safety culture considered in the selection
of contractors). Similarly, broad security issues have not been considered. It may be
possible in future versions of the Framework to reference out these objectives to a QMS

standard.

I IOy S, \.bﬂv'f GE OIS O T T o il - 4@“13!1& Jdie

,opennolal pb.ue The integrity caa be compromised i thoee ways:

(i) Maintenance and modification activities are inadequate. It should be appreciated
that maintenance can be a dominant source of common mode failures in redundaat
systems. Also, maintenance will be particularly important in long lifetime systems
or systems which are expected to evolve.

(i) Security of the embedded code is violated. General consideration of security are
outside the scope of this framework, for further discussion see the publications from
the DTT Commercial Security Centre [9].

(iii) Failures in the system violate the stated conditions under which the integrity is
ensured. The detection, toleration and management of such changes are addressed
in the section on validity (K.2) and are not considered further in this sectiom.

109 The need for maintenance of the hardware and software will affect the design of
the software structure and fault handling, reporting and recovery mechanisms. This is
addressed in section K.2.

' Objectxve:mtegntymfsmﬁ:wammanntamaddmngapm
Sub-Obgectives ’Bedmlques IEC bechmques

maintenance plaaning aad standacds; standacds;
manual configuration management;
automated configuration management;
authocrisation peoceduces; availability of
qualified stafl; development facilities;
Quality Management Systems

integrity of application of design standards and f

modifications development standards to modifications;
regression testing; procedures for assessing

impact and importance of change; ‘

ﬁu'wtx anj D;fruc!urm‘

security: software robust storage media; security; error correcting codes
code unchanged administrative access cont.roﬂ passwords

operational stafl; encryption and other

fault tolerant techniques
o e e

safety critical data not changed by I

-

comprehenaon

i

OF AL g : -

umely'i'” of doc iation: vieible
lifecycle; saxstactm of other fnmewotk
objectives

4

empirical and a.nalytxc
evidence

See ‘satisfaction of specification’. In
addition require: proof deliverable;
appropriate V&V techniques — dynami
testi i ing, clocume'n%—L
reviews; evaluation of operating experience
of identical and similar systems; use of
proven or certificated components

formal proof of
program; checkliats;
Fagan inspections;
formal design reviews;
boundary value
analysis; error
guessing; error
seeding; performaace
modelling; simulation;
test coverage;
functional testing

recognition of residual | claim limits; design guidance (e.g. ‘no
doubt single failure criterion’) on system level
diversity
recognition of Wd checklists; Fagan
callibdi - 7 ISA: di . ious: f I
checker; diversity of other toois; robus design reviews; fauilt
ﬁb fault detection and contanment detection and
) d i i diagnosis
demonstration to mvolveﬁencofcw QA\VM; checklists; Fagan
| second or third parties | QMS; liason with customer QMS; inspections; formal
compliance with [lealth and Safety at design reviews

Wock Act and other relevant legisiation
and standards; safety record log oc
accomplishment summary; certification of
people, procedures and components

Lalic system of formal mathematical
reasoning - | modelling
Oy
Gy,

/"?Ca SpecTra Screen Mock-up

<D
H(
y > <>
* \\

lll

e
:
)

o
Sy
T
i
|
|

| See: PIrers Ay permea’/i
| Qon%é. , Dec. SELM

labeI:: Books
type:: declaratioa

date:: Jun 14 10:05 1990
author:: greene

Contents:: books is set of book -

Figure 7 Contents of the Decl node labeled books

Besides the one-of links (denoting the set membership relation), there are is-of-
type and depends-upon links (v is-of -type r when v is a state variable and ¢ is its
type and Decl d! depends-on Decl d2 when the declaration 42 mentions the formal
entity declared in d/). These links are by default invisible (to cut down on the clutter) but
can be displayed at the user’s request. For example, a user can click on a transition node (a
node containing the eatry and exit conditioas of an ASLAN transition) and ask for all of
the nodes in the specificatioa oa which this transition depends. SpecTra then highlights all
of the nodes in the specificatioa which can be reached by starting at the clicked upon node
and following depends -upoa links. Thus the graphical representation of an ASLAN
specification is easier t0 browse than the textual representation. SpecTra is also able to
highlight all the nodes which depead upoa a user specified node. This eases the task of
specification modificatioa as users can be pointed 10 ail the pares of the specification which
will be affeceed by a change.

Figure 8 Informal requirements linked to formal specification

Using dese sew node and links types, formal ASLAN specifications can be entered and
browsed wishin Germ. Additionally, /P/A structured informal requirements may coexist
in the database and these informal notions may be linked to the portion of the formal spec-
ification which is their formalization. For example, in the process of coming up with re-
quiremens foc the library database, the following issue arose. Should the concepts book
mdoopybeidcntiﬁed?Argumenu(proandcon)wmgivenmditmdeddedma@e
two notions should be distinguished. The position taken was that a book was something
abstract and that a copy was an instance of that abstraction. The links between this posi-

MCC Kt fewsone m:/

s M e Bytcusima : Animatrp,

A R B R R R 0 Y A0 S RREO RS S

N] “
— —1 (= -~
: t1 sl 2 alie
, al "
; t2
3 1: t1 regquest =i
7 P 2: t] acquire a1
3: 12 request al
@ VAV 4: t1 request m2
3 al : ¢ g: t1 acquire m2
ts '3} \ 7: tl wait il c
8: t3 acquire al
9: t3 signal mi ¢
W110: t1 swake ml c
. ==114: t3 releass al
b n2
Copyright MCC 1988 : 7 . -
Capyright 1908 NCC . 3 ‘ - ! =
ved Jul § 15:34:16 1908 4 ——l.
Read Bone ~ & . - s
{ h’_] C as J a : Corrent: S5: t3 request mi . catey te secende: i
bPelay o 0 Dutput & print
CEA RSSO R irection O forvers Srigin O cwrreat Nevemsat Ceove
C) taterva) (11 1 []
\ stwe 1) 10 T
CROT) »emr W 10] 10
l 5 : - End Action Tstop Sepiction Coexs Scroen Coene Saep Con Flamn Con
b bin/csh bin/c : .

mmwﬁm O‘)c
Process (thresds) SPee

ORig,

O "Ny,
" 02465 IS

Figure 2 Relationship of the risk and safety
integrity levels to the Safety Lifecycie Model

Hazard
Analysis

Risk
Assessment

Designation of
Safety Related
Systems

'

‘ Validation
" Planning

l

Risk and Safety
Integrity Levels:
Influencing Factors

- Legislation

» International
Standards

- National Standards
- Safety Regulatory
Authority Guidelines

ORig
pO%
EM
)
AN

esign and — | Verification
Implementation |-

'

e

Safety
Validation

l

System

Operation and
Maintenance

Decommissioning |-~ Sefety

.

b:m_-"_i——} o

&”c lvs 104

Sale LT Cowld be used A def’,

Suppert Needes/ 4

r 7rnef
\%\S/‘M 0’{0‘/, P . ‘(/‘V*A)/
%ce JM‘;U / "‘

Wr@/lmm«vry /{-SS&SSMJ -FEM
o Evidence #or em&ﬁ.ww
T88E Sw, Lomputis, TSE Sagt. 1
FMET - Springer Virieg 199/

v Educaten bosrs |
| SEL MSE, tewts, nefwore §roup:

e Tool envirenme¥Fs Wwear

me’“--z->9rm/ CASE

A0 Forma] MeHods /’D’oyee-'a‘
’) 7 ransitim Sty
Jaruéy, ASSess

E,Jper‘lM
Gdu et o

14 orjamapﬂm.s, el MASA, mITRE,

Bocewoit

2) SpeTre
/&perfbm‘ ¢/a7l1¢vm.

N‘d“ ',SP‘“O) .
hintce- Drocess, depsndonce,

“"Executable Specs ”

kog e § " W Preg.
h(y 6NJ M#?fs f
Injed rw)‘nj ols

MCC

Formal Methods Transition Study

Interest is growing worldwide in the application of
precise mathematical techniques to the specification
and design of hardware and software systems. In
fact, European successes in this area, commonly
called Formal Methods, have already led govern-
ments to require that the techniques be used for safe-
ty critical systems.

MCC'’s Software Technology Program proposes a one-
year in-depth study of Formal Methods techniques
and the tools that support them. Drawing upon sig-
nificant research experience at MCC, we will assess
the state of the art worldwide and determine the im-
plications for a variety of North American industries.

This proposal describes the background, rationale,
and contents of the funded study, including its time-
line and deliverables. Our goal is to provide execu-
tives with the information they need to ascertain
their own companies’ requirements in the Formal
Methods area. For those whose interest calls for fur-
ther technology development, this study will also es-
tablish a plan for appropriate research and develop-
ment work. ’

Background, Rationale: Formal Methods, a bedy
of techniques supported by powerful reasoning tools,

offer rigorous and effective ways to model, design,
and analyze systems. Several research groups, pri-
marily in Europe, have generated specification, im-
plementation, and verification techniques for a broad
class of systems, and have cast the techniques into in-
dustrially usable forms. Their affiliated companies
have already employed several of these techniques in
the development of real-world hardware and soft-
ware applications. Attention by governments and in-
dustry is increasing as well, due in large part to a
growing concern with the high risks of faulty comput-
er control in systems critical to life and property. In-
deed, certain combinations of Formal Methods are
now seen as necessary for ensuring that these sys-
tems meet existing regulations and standards, or
that they avoid legal liability repercussions. And
there are other, broader applications for these tech-
niques as well; in particular, they can help circum-
vent many of the expensive problems of general soft-

Call for Participation
April, 1990

ware development practices, such as late discovery of
errors and poor communication among end users, de-
signers, specifiers, and implementors.

MCC is in a unique position to build on the progress
in Formal Methods. Even today, a number of tools
and techniques developed in MCC research laborato-
ries can be brought to bear. For example, Software’s
issue-based design methodology can be integrated
with Advanced Computing Technology’s declarative
language technology and with externally developed
Formal Methods-based toolsets. MCC researchers
have proposed several novel ways in which to exploit
MCC-developed techniques to advance Formal Meth-
ods research. Moreover, researchers in the Software
Technology and Computer-aided Design programs
are investigating CoDesign—design and analysis
techniques spanning both hardware and software. So
that we may capitalize on worthwhile outside devel-
opments as they occur, MCC’s International Liaison
Office closely monitors the maturation of Formal
Methods techniques in Europe and gauges industrial
and government interest in both Europe and the U.S.
At the same time, MCC’s experiences with technolo-
gy transfer continue to give us bountiful insights into
the problems and operations of MCC's sponsoring or-
ganizations.

: We propose to study Formal
Methods issues as they directly relate to North Amer-
ican companies. First, we will determine how Formal
Methods can help these companies meet demands for
higher quality, possibly regulated software-intensive
systems. Second, we will pinpoint how the companies
can exploit Formal Methods in current environments
for more productive software development processes.

The study will explore the issues and topics that per-
tain to a full-scale Formal Methods research effort at
MCC, including:

Fundamental concepts of Formal Methods—what is a
formal method, and how does it work?

Training and instructional materigl—sample course
outlines, evaluation of course offerings.

Modes of using formal methods—specification, verifi-
cation, documentation, refinement; integration
with object-oriented and other widespread ap-
proaches; consistency of artifacts from require-
ments through code.

Survey of major applications—summaries of Formal
Methods projects to date, interpretations of col-
lected project data, evaluation of successes and
failures, derived guidelines for applications.

Tools survey—catalog of editors, syntacﬁc/semantic '

checkers, theorem provers, and other tools; MCC
experiments with North American and European
toolsets; assessment of state of toolsets.

Models of formal-based sofiware development—injec-
tion of techniques into standard productivity,
risk, and QA models; scenarios of future develop-
ment processes.

Regulatory and legal trends in safety and security—
the high-integrity market sector; research fund-
ing patterns (U.S., Europe, and Japan); forecasts
of error and development costs, adoption pat-
terns, optimistic and pessimistic scenarios.

Transitional tips—what to teach, to whom, and fol-
low-through; projects to try; pitfalls, motivation,
and so on.

Experimental results—results of using MCC technol-
ogy and personnel, along with imported tools, in-
structors, consultants, and other studies, to ap-
ply Formal Methods to industrially relevant
problems. These experiments will illustrate
many of the above topics.

Research needs and strategy.

Timeline and Deliverables: The proposed study
will be conducted from September 1, 1990, to Septem-
ber 30, 1991. At the end of this period, participants
will receive a comprehensive report covering the top-
ics outlined above, together with video overviews,
tool demonstrations, and thorough accounts of exper-
imental protocols and results. Drafts of the report’s
topics will be available at quarterly intervals; mid-
term and final reviews and information sessions will
occur at the MCC site; and at least one formal inter-

action will be designed according to the specific inter-
ests of each participant (within the domain expertise
limits of MCC personnel).

The study in its entirety will be proprietary to partic-
ipants for one year, after which MCC may distribute
it more widely. Selected sections reporting experi-
mental results and new insights of interest to the re-
search community may be published as technical re-
ports and papers during the course of the study, both
to further the field and to establish the MCC Formal
Methods initiative in the research community.

Costs: Costs for the study will be targeted to ten
participants at $60,000 each. Membership is open to
all MCC shareholders and associates; non-member
companies can opt to participate in MCC for the one-
year study period only, paying a special Project Asso-
ciate fee of $7,500 in addition to the study participa-
tion fee. Should there be more than ten participants,
additional personnel will be added to increase the
study’s scope and depth.

A full-scale, multiple-year Formal Methods initiative
will be proposed in mid-1991. While the study's re-
port will motivate many of the initiative’s activities,
it will not constitute a full definition of those activi-
ties. Study participants have no commitment beyond
September 1, 1991; however, if a participant does
elect membership in the initiative, it may deduct
$25,000 from the cost of membership over the first
two years.

Personnel: The MCC researchers who will conduct
the study are broadly experienced in the theory and
application of Formal Methods techniques and tools.
They are also experts in tracking and forecasting
technology trends. The study coordinator, Dr. Susan
Gerhart, has led a major U.S. formal verification
project and participates in international Formal
Methods strategic activities. Other project members
are experts in a variety of tools (already assembled at
MCC), techniques, and theories and have applied
them to industrially interesting problems. This
unique group has been cooperating for a year and will
be complemented by consulting expertise from out-
side MCC as well as from related MCC projects.

Por more information, contact:
Busan Gerhart Ted Ralston
(513) 338-3493 (513) 338.3547
gerhart®mec.com ralston@mcc.com

Microelectronios and Computer Technology Corporntion
3500 W. Baleconss Center Drive
Austin, Texas 78789

LI .

Issues Related to Ada 9X

John McHugh
Computational Logic, Inc.

Recent Ada 9X
Activities

John McHugh

Baldwin / McHugh Associates
Durham, North Carolina

8 November 1990

Ada 9X Activities

OVERVIEW

» Ada 9X
+ The 9X process

» Issues for Critical
Systems

Ada 9X Activities

Page 1

ISO Standards such as Ada must be
reviewed for possible revision every 10
years. The review process can

- Leave the standard unchanged
« Withdraw the standard
« Initiate a revision process

Ada 83 is undergoing a revision. The new
language will be known as Ada 9X.

» The current expected value for X is 3.

Ada 9X Activities

|The Ada 9X Processl

The Ada 9X process is being managed by
the Air Force out of Eglin AFB, Fla. The
project manager Is Christine Anderson.

» Revision requests submitted 88-89
Requirements workshops 89-90
Distiiled to revision issues by IDA
Requirements document - drafts fall S0
Inputs still coming from interest groups
Mapping contractor (Intermetrics) will map
requirements into revised language

Ada 9X Activities

Page 2

| My Subjective View of Processl

The following represent my own , distinctly
minority view of the process.

+ The ground rule that calls for upward
compatibility at all costs does more harm
than good as it guarantees a more complex
language.

+ As Ada tries to be all things to all people,
dialects and subsets will become necessary.

+ A rational approach is probably not possible.
Without it, Ada 9X will not be a substantial
Improvement over Ada 83 and Ada will
eventually collapse under its own weight,

Ada 9X Activities

[Ada 9 X and Critical Systems |

As a part of the revision that Ada is
undergoing , the trusted systems
community has raised a number of
issues. They are summarized in the
following slides.

Ada 9X Activities

Page 3

|Requirement AI

IDENTIFY AND JUSTIFY ALL ELEMENTS OF THE
STANDARD THAT PERMIT UNPREDICTABLE
PROGRAM BEHAVIOR.

e.g., Program blockage
Integer (1.5) 2 Integer(1.5)

INTENT IS TO ELIMINATE WHERE POSSIBLE
AND FORCE ANALYSIS AND COST BENEFIT
DECISION ELSEWHERE.

Ada 9X Activities

IREQUIREMENT A -continuedl

1) Eliminate most erroneous cases

2) Eliminate "Incorrect order dependency"—define
order-dependent semantics

3) Define undesirable implementation dependency (UID)
4) UID has defined effect, not cause for "program error"

5) Implementations shall attempt to detect remaining
erroneous and UID cases

6) Specific cases of undefined variables:
a. Majority - URG position on LHS usage
b. Minority - catch all usage

Ada 9X Activities

Page 4

REQUIREMENT B

EXPOSE IMPLEMENTATION CHOICES
1) Language choices (LRM aliternatives)

2) Implementation strategy (storage management,
scheduling, etc.)

Static choices
Dynamic choices
What can user control?

How can information be shared with others? With
tools?

Choices include:

a) Parameter passage

b) Optimization

¢) Heap vs stack vs ...storage management

Ada 9X Activities

REQUIREMENT C

ALLOW USERS TO CONTROL
IMPLEMENTATION TECHNIQUES

Certain impiementation choices lead to
exgloslve growth In possible execution
behaviors.

Implementations must honor—or reject with

warnings-user directives for items such as
parameter passing mechanisms, orders of
evaluations, etc.

This is analogous to the representation
specification for data.

Ada 9X Activities

Page 5

|REQUIREMENT DI

IMPLEMENTATIONS SHALL ATTEMPT COMPILE
OR RUNTIME ANALYSIS FOR KNOWABLE
INSTANCES OF UNSOUND PROGRAMMING AND
ISSUE WARNINGS/EXCEPTIONS AS
APPROPRIATE.

- Aliasing

- Unsynchronized sharing
- Uninitialized variables

- Etc.

Ada9X Activities

|REQUIREMENT El

PROGRAM BEHAVIOR TO BE DEFINED OR
PREDICTABLE IN THE FACE OF OPTIMIZATION

We call for further study on the following
- Canonical order of evaluation vs radical
optimizations
- Exceptions
- Slide effects
- Possiblility of pragma control

Ada 9X Activities

Page 6

I REQUIREMENT FI

FORMAL STATIC SEMANTICS AS PART OF
ADA 9X STANDARD

The formal definition to be accompanied by tools that

facilitate use for answering questions about the legality
and meaning of programs.

While this does not necessarily change the language,
development of the definition and tools may contribute
to language changes.

N.B. Parameterize tormal definition for impliementation
decisions and architecture/environment.

Ada 9X Activities

|REQUIREMENT Gl

DYNAMIC SEMANTICS AS ONGOING EFFORT WITH
AIM OF INCORPORATIONS IN NEXT STANDARD.

This area has enough uncertainty to keep it off the Ada
9X critical reth. On the other hand, development of
portions of the dynamic semantics as part of the Ada 9X
effort should aid in evaluating and understanding
proposed language changes.

N.B. Parameterize formal definition for implementation
decisions and architecture/environment.

Ada 9X Activities

Page 7

REQUIREMENT H}

ASSERTIONS

MAJORITY
1) Need dynamic semantics for assertions
to be useful for proof
2) Suitable form not known
- Extend Ada expressions
- Ada vs spec functions
- Ete. ,
. Wait, but work on issue
MINORITY
1) Anna exists
2) Annais better than nothing
.. Use Anna for now)

DON'T PRECLUDE LATER
CHOICE/DECISION

Ada 9X Activities

' |Mixed Resultsl

Requirements A, B, and D are largely
reflected in the Requirements Document

Requirements C and H have been largely
ignored.

Requirement E has resulted in special
consideration being given to the critical
systems community.

Requirements F and G have been
completely rejected, but ...

Ada 9X Activities

Page 8

|Language Precision Team l

PRDA issued by Ada 9X project last
spring.

« Supports Ada 9X mapping team
by providing formal analysis of
selected language topics

"Creeping formalism" approach to
demonstrating utility of formal

methodology

- May have some influence on Ada 9X
language

A team led by ORA was issued a contract
during the last days of FY 89.

Ada 9X Activities »

|Research Issues and Effortsl

The language precision team will work with :
Intermetrics to model specific aspects of the Ada
language where the application of formal
techniques appears to have promise. These
include optimization and tasking. While the project
is probably worth while, the approach may be less
than satisfactory for a number of reasons.

Ada 9X Activities

Page 9

-

|Features Interact I

In isolation, most Ada features are
innocuous. It is in combination that
they cause problems. The LPT
approach risks ignoring the
interactions

» Overloading

« Separate Compilation

* Private types

- Signals and handlers

» Tasking

- Optimization and code generation

Ada 9X Activities

onsider Optimization

C

Optimization and code generation are difficult to
separate. One man's optimization strategy is
another’'s code generation paradigm.

- Ada has no explicit low level parallelism. Most
modern architectures do, even if itis only a

pipeline or a coprocessor.

« Array and vector processors have primitives
that are of a higher level than the Ada
primitives that they implement.

» The abllity of the programmer to explicitly
handle exceptions from predefined operations
makes visible Implementation detalls that are

better hidden.

Ada 9X Activities

{

Page 10

Reconsider Optimization

The interaction of exception handling, global data,
and separate compilation with low level parallelism
makes code generation difficuit.

- Reordering exception raising operations can
create unexpected program states or even turn a
legal program into an erroneous one.

If the exception is unhandled, this may not
matter.

If the exception is handled in another
compilation, the dependencies are difficult to
track.

. Without global analysis, the wrong choices are
sure to be made sometimes.

Ada 9X Activities

lMeanwhile back at Intermetricsl

The first Ada 9X Mapping Issues document
produced by Intermetrics addresses no issues
that are of specific interest to the critical systems
community. The issues addressed include:

- Type extensions and polymorphism

« Pointers to static objects

« Changes In visibility rules for operators
. otc.

Ada 9X Activities

Page 11

e s N A s R T

at lie Ahead

The process will inexorably wend its way
towards a revised Ada. While some of the
warts of the present language may be
removed In the process, it is certain that
others will spring up to take their place.

The process is under the control of those with
a certain vested interest in the status quo.

What is lacking is a long term, radical view of
what ought to be. If Ada 9X, like Ada 83 fails
to serve the needs of portions of the
community, where can they go? What
alternatives do they have?

Ada 9X Activities

Page 12

